Horizontal Directional Drilling: What's The Benefit?

Since the early days of the oil industry, operators have been drilling vertical wells to tap oil and gas reservoirs. The advantages are cheap and simple wells with minimal need for technology or highly accurate data. Directional wells were limited to situations which required directional drilling to be used like offshore wells or reservoirs with restricted land access at surface, for example. Over the recent years technology has improved to the point where the rewards for drilling a horizontal well have exceeded the risks of failure on nearly all fields.

The two main advantages from horizontal wells are: a. more effective drainage of the reservoir (i.e. increased overall reserves recovery) b. reduced water and gas coning. The drainage of a reservoir is increased by horizontal drilling through increasing the amount of reservoir that is exposed to the wellbore. This is also the mechanism behind the reduced water and gas coning, for a given production rate, a horizontal well requires less drawdown pressure and therefore the water and gas coning will happen slower.

Directional coiled tubing drilling is usually used in medium radius applications where the build up section can be up to 50°/100ft. This high dogleg capability is useful for avoiding trouble zones when sidetracking from an existing vertical well bore by exiting beneath them.

Despite the advantages of horizontal drilling it is still not universally applied. EIA statistics from the USA show that this is changing and the proportion of horizontal wells is increasing. Of the wells drilled in 2015 that went on to produce more than 400 barrels of oil equivalent per day, 77% were drilled horizontally. For wells producing between 15 to 400 barrels of oil equivalent per day, 42% were drilled horizontally and that proportion is increasing rapidly. Only 2% of stripper wells were drilled horizontally. It is clear to see that there is a correlation between drilling horizontal wells and increased production. There are lots of factors at play in such broad statistics but it does show that the technology has come of age and is being used by leading operators to achieve a competitive advantage.

 

Author: Adam Miszewski

Read more

How To Achieve Step-By-Step Energy Transition
Read More
AnTech
Case Study: Longest Lateral Drilled in 24hrs on the North Slope using at-balance CTD
Read More
AnTech
Case Study: Coiled Tubing Drilling, Kuparuk Oilfield, North Slope Alaska (SPE 168250)​
Read More
AnTech
Case Study: Western Australia UBCTD Project That Boosts Oil Production
Read More
AnTech
Case Study: UBCTD That Enables Real-Time Decision Making
Read More
AnTech
Benefits Of Underbalanced Coiled Tubing Drilling
Read More
AnTech
Coiled Tubing String Retirement​
Read More
AnTech
Coiled Tubing: Repeated Bend Cycling And Microcracks​
Read More
AnTech
Understanding Coiled Tubing Fatigue Damage And Its Influencing Factors​
Read More
AnTech
Underbalanced Coiled Tubing Drilling in Tight Sandstone Case Study: Part Two​
Read More
AnTech
Underbalanced Coiled Tubing Drilling in Tight Sandstone Case Study: Part One
Read More
AnTech
Underbalanced Offshore Coiled Tubing Drilling Case Study: Part Three
Read More
AnTech
Underbalanced Offshore Coiled Tubing Drilling Case Study: Part Two​
Read More
AnTech
Underbalanced Offshore Coiled Tubing Drilling Case Study: Part One
Read More
AnTech
Possible use of Tractors for Coiled Tubing Drilling
Read More
AnTech
Cryogenic vs Membrane Nitrogen in CT Applications: The Big Picture
Read More
AnTech
Casing Exits For Coiled Tubing Drilling Operations
Read More
AnTech
Real-time, at-bit Geosteering for Coiled Tubing Drilling​
Read More
AnTech
Find Your Reason Why: Well Selection For UBCTD​
Read More
AnTech
What Is An Orienter?​
Read More
AnTech
Convert Your CT Unit To E-Coil​
Read More
AnTech
Reservoir Characterisation While Drilling Underbalanced​
Read More
AnTech
The Importance Of A Gyro In A Coiled Tubing Drilling BHA
Read More
AnTech
Modelling And Visualisation Of Drilling A Horizontal Well​
Read More
AnTech
Exploring The Mechanism Of Coiled Tubing Lock-Up
Read More
AnTech
Exploring The Mechanism Of Coiled Tubing Lock-UpExploring The Mechanism Of Coiled Tubing Lock-Up
Read More
AnTech
Applications For Coiled Tubing Drilling​
Read More
AnTech
Why A Gyro System Is So Important For Horizontal Directional Drilling​
Read More
AnTech
Lesson 101: Setting Up And Operating A Test Facility For HPHT Equipment​
Read More
AnTech
The Importance Of Near Bit Sensors For Coiled Tubing Drilling​
Read More
AnTech
How To Drill An Openhole Sidetrack With Coiled Tubing Drilling
Read More
AnTech
Combating Lost Circulation Using Underbalanced Drilling & CTD​
Read More
AnTech
How Do You Drill A Directional Well With Coiled Tubing?​
Read More
AnTech
Why A Milling Monitoring Tool Is A Good Friend To Have On Plug Mill-Out Operations​
Read More
AnTech
How To Drill Faster With Coiled Tubing​
Read More
AnTech
Introduction to CTD Wellbore Hydraulic Modelling - Part Two​
Read More
AnTech
Selecting a Coiled Tubing Unit for CTD: Part Two
Read More
AnTech
Selecting a Coiled Tubing Unit for CTD: Part One
Read More
AnTech
Introduction To CTD Wellbore Hydraulic Modelling - Part One
Read More
AnTech
How Computational Modelling Contributes To Planning A Successful CTD Campaign
Read More
AnTech
Jointed Pipe Versus Coiled Tubing Underbalanced Drilling​
Read More
AnTech
Ben​efits Of Drilling A Straight Hole With Coiled Tubing Drilling​
Read More
AnTech
Leading The Way - Quality Control Of Directional Measurements
Read More
AnTech
Why A Downhole WOB Sensor Is So Important When Drilling With CT
Read More
AnTech
What Is Underbalanced Drilling & How Does It Work?
Read More
AnTech

Search